Uncoupling genotoxic stress responses from circadian control increases susceptibility to mammary carcinogenesis
نویسندگان
چکیده
We previously demonstrated that chemopreventive methylselenocysteine (MSC) prevents N-Nitroso-N-methylurea (NMU)-induced mammary carcinogenesis in the susceptible Fischer 344 (F344) rats by enhancing NAD+-dependent SIRT1 activity, restoring circadian expression of Period 2 (Per2) and circadian controlled genes. Here, we show that compared to the genetically resistant Copenhagen (COP) rat strain, mammary glands of the F344 rats have a 4-hour phase delay in circadian expression of Per2. Consequently, F344 rats failed to increase SIRT1 activity and circadian expression of Per2 and DDRR genes after exposure to NMU. Exposure of COP rats to NMU had the opposite effect, enhancing SIRT1 activity, increasing circadian expression of Per2 and DDRR genes. Significantly, SIRT1 activity and circadian expression of Per2 and DDRR genes in NMU-treated F344 rats on a chemopreventive regimen of MSC approximated those in NMU-treated COP rats. These results indicated that COP rats have an increased capacity to maintain NAD+-dependent SIRT1 activity under genotoxic stress. This contention was supported by increased stability of the period and phase of circadian locomotor activity in COP vs F344 rats exposed to changing light conditions. The increased sensitivity and rapid response of COP to changing light were correlated with the enhanced circadian response of this strain to carcinogen. Disturbance of circadian rhythm by jet lag also disrupted circadian expression of Per2 and DDRR genes, and accelerated mammary tumorigenesis in rodent models. These results suggested that uncoupling of DDRR responses from circadian control by environmental stresses and endogenous factors increases susceptibility to mammary carcinogenesis, possibly by inducing a promutagenic state.
منابع مشابه
DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization
The circadian transcriptional repressors cryptochrome 1 (Cry1) and 2 (Cry2) evolved from photolyases, bacterial light-activated DNA repair enzymes. In this study, we report that while they have lost DNA repair activity, Cry1/2 adapted to protect genomic integrity by responding to DNA damage through posttranslational modification and coordinating the downstream transcriptional response. We demon...
متن کاملChemopreventive doses of methylselenocysteine alter circadian rhythm in rat mammary tissue.
It is known that organic forms of selenium inhibit chemically induced rat mammary carcinogenesis, although the molecular basis remains to be elucidated. To identify signaling pathways involved in carcinogenesis that are also modulated by methylselenocysteine, we compared the global gene expression profiles in mammary tissues from pubescent female rats maintained on a selenium-supplemented (3 pp...
متن کاملTurnover of BRCA1 Involves in Radiation-Induced Apoptosis
BACKGROUND Germ-line mutations of the breast cancer susceptibility gene-1 (BRCA1) increase the susceptibility to tumorigenesis. The function of BRCA1 is to regulate critical cellular processes, including cell cycle progression, genomic integrity, and apoptosis. Studies on the regulation of BRCA1 have focused intensely on transcription and phosphorylation mechanisms. Proteolytic regulation of BR...
متن کاملDual role of the CLOCK/BMAL1 circadian complex in transcriptional regulation.
The basic helix-loop-helix (bHLH) -PAS domain containing transcription factors CLOCK and BMAL1 are two major components of the circadian molecular oscillator. It is known that the CLOCK/BMAL1 complex positively regulates the activity of E-box containing promoters. Here we demonstrate that the CLOCK/BMAL1 complex can also suppress the activity of some promoters upon its interaction with CRYPTOCH...
متن کاملEffect of Eight Weeks of Endurance Training in Light and Dark Phases of Circadian Rhythm on the Oxidative Stress Index in Pancreas of Diabetic Mice
Introduction: Chronic hyperglycemia is associated with an increase in cellular damage due to oxidative stress in pancreatic tissue. The effect of exercise in different phases of the circadian cycle on protecting pancreatic tissue from oxidative stress in diabetic patients is unknown. The aim of this study was to investigate the effect of eight weeks of endurance training in light and dark phase...
متن کامل